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LETTER TO THE EDITOR 

l/p expansion for a p-spin interaction spin-glass model in a 
transverse field 

V DobrosavljeviC and D Thirumalai 
Institute for Physical Science and Technology, University of Maryland, College Park, M D  
20742, USA 

Received 8 May 1990 

Abstract. We develop systematic l / p  expansions for the p-spin interaction spin-glass model 
in a transverse field. This model can be solved using the static approximation (SA), which 
is expected to be valid in the limit p + CO. For large, but finite p ,  corrections to SA can be 
obtained, and the non-trivial time dependence of the imaginary time correlation function 
for quantum spins calculated. These corrections qualitatively change the low temperature 
behaviour for large p .  In particular the corrections to the SA result in the entropy vanishing 
exponentially as the temperature tends to zero. We compute the finite p changes in the 
phase diagram, and discuss the emergence of a new critical point ending the transition 
line separating the two paramagnetic phases. 

Several infinite range models exhibiting spin-glass behaviour have been solved [ 11. 
However, the addition of quantum fluctuations precludes an exact solution even in 
this mean field limit. Numerous studies of quantum versions of Heisenberg and Ising 
spin glasses [2-121 show that the difficulties originate from the presence of an additional 
dynamical self-coupling induced by averaging over randomness. Specifically, this 
averaging induces an interaction coupling the quantum spin at different imaginary 
times. The coupling constant A ( t ,  t ’ )  is determined self-consistently. 

An approximate solution to the problem can be obtained by replacing A ( t ,  t ’ )  by 
an appropriate time average. This method, which was originally proposed by Bray and 
Moore [ 5 ]  and is referred to as the static approximation (SA), can be readily used to 
solve the mean field equations and the resulting phase diagram can be computed. 
Furthermore, Thirumalai, Li and Kirkpatrick (TLK) studied the stability of the replica- 
symmetric (RS) solution in the spin-glass (SG) phase [12]. The RS solution was shown 
to be stable in a region of the SG phase. However, TLK also pointed out the limitations 
of the SA by examining the low temperature properties of the theory. In particular, it 
is found [12] that the entropy does not vanish at zero temperature. Moreover, the 
theory also predicts a finite slope d T,/dT of the critical glass transition line as T + 0. 
This is in apparent violation of thermodynamics which would require this slope to 
diverge at low temperatures [13]. It is interesting to note that although these features 
appear to be just artefacts of the theory, they have nevertheless been used to interpret 
[ 141 recent experiments [ 15,16,17] on proton glasses. 

In order to gain a better understanding of quantum spin-glass problems, it would 
be helpful to examine the limits of the validity of the static approximation by applying 
it to an exactly solvable model. Very recently, it has been suggested [18] that the p-spin 
interaction model in a transverse field with p = CO is the appropriate choice since the 
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quantum fluctuations can be exactly accounted for using the static approximation. In 
this model which is the quantum analogue of the 'simplest spin glass' [19], the 
interaction A (t,  t ')  of spins at different imaginary times can either be infinite (suppress- 
ing quantum fluctuations) or zero. The static approximation is formally exact in this 
limit because A ( t ,  t ' )  does not have a non-trivial time dependence. 

A more stringent test of the static approximation would be to examine its validity 
for large but j n i t e  p ,  where A ( t ,  t ' )  not only has a finite value but in principle can also 
have a complicated time dependence. For this model a systematic l /p  expansion is 
possible, and thus one can examine the differences between the exact solution and the 
predictions obtained using SA. Since the interesting differences occur in the paramag- 
netic phases, we confine our attention to this region of the phase diagram. In addition 
to assessing the limitations of SA, we also examine the changes in the structure of the 
phase diagram at large but finite p .  

We consider the model with the Hamiltonian 

x= - 1' J,, ,j;, . . . G;~-I- 6; (1) 

where 6' and ex are the Pauli matrices, the prime indicates summation over all distinct 
clusters of p spins and the random bond interaction elements J,, J p  are distributed 
according to 

11 J p  J 

Using the Trotter-Suzuki discretised path integral formulation [20] and the replica 
trick [l], one can average [ I I ,  121 2" where 2 is the partition function, over random 
bond elements and the result is [18] 

[ Z " ]  = Tr exp[-p%?] 

where 

with a = 1, , , . , n ( n  -> 0) are replica indices, t = 1, . . . , M (M --f CO) (imaginary) time 
indices, py( t )  = i l ,  and the non-interacting spin Hamiltonian is 

-PRO[ P 1 = a c c P, ( t 1 PJ ( t + 1 1 + c (4) 
I f  

with 

a =;In cosh(pI'/M) C = &NM ln[cosh(pr/ M) sinh(pI-/M)]. 
For infinite-ranged interactions, it is possible to decouple the interactions between 
various sites by introducing appropriate Lagrange multipliers [ 18,191 (in order to 
constrain the order parameters) and the resulting (replicated) partition becomes 

[Z"l= W c t p ( t ,  t ')DA,p(t, t ' )  exp{-NG[Q, A I )  ( 5 )  

where the (reduced) free energy G[Q, A ]  is given by: 
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with the effective Hamiltonian: 

In the thermodynamic limit the partition function is dominated by the saddle point 
of G[Q, A ]  and we obtain the following set of self-consistent equations: 

L p ( C  t ’ )  = M J ) ’ p Q P , p ’ ( t ,  f ’ )  Q,p(t ,  t ’ )  = (P .” ( t )Pp( t ’N (8) 
where the averages are taken with respect to -pXeff[p, A]. 

These equations cannot, for arbitrary values of p ,  be solved exactly due to the 
complicated, time dependent form of the effective Hamiltonian -@Veff[p, A]. However, 
for the special value p = CO, A m p (  1, t’) becomes independent of time [ 181. This is because 
Qap( t, t’) s 1 and it follows that A,@( t, t‘) can either be 0 or CO. The order parameters 
x(  t ,  t’) = On,( t, t’) and qnp = Q n i r p (  t, t’) (qap must be time independent) can be used 
to identify three possible phases [18] of the model. For qnp =0, ~ ( t ,  t ’ ) S  1, all As 
vanish and we are left with non-interacting quantum spins-a ‘quantum paramagnetic’ 
(QP) phase. Alternatively, when x = 1, A,, = CO which suppresses all quantum fluctu- 
ations and the problem reduces to the classical limit. Consequently, two more phases 
emerge-the ‘classical paramagnetic’ ( CP) phase and the (classical) spin-glass ( SG) 

phase, having structures identical to the classical p-spin (p = CO) interaction model. 
(Note that in the SG phase at least some of the qaps are 1 (for p = CO) so that the 
corresponding As diverge, completely suppressing quantum fluctuations, so that we 
cannot have a ‘quantum spin-glass phase’ in this limit.) Thus, for p = CO, our problem 
is reduced to either the classical limit, or to non-interacting quantum spins, and there 
are no non-trivial effects of quantum fluctuations. 

In order to examine the finite p behaviour let us first set up the static approximation 
which amounts to retaining only the zero Martsubara frequency component of x( t, r ’ ) .  
The free energy of the paramagnetic phases is found to be F =  TG with 

G(x, A ) =  -~(pJ)2Xp+&i,y-ln Dz c o ~ h [ ( p T ) ~ + A z ~ ] ’ / ~ - l n 2  (9) I 
where 

For large but finite values of p ,  we expect the solutions to be close to the ones at 
p = CO, allowing us to perform systematic expansions because A can assume either very 
large or very small values. In particular, in the CP phase, where A - p  is large we can 
use steepest descent methods to perform the necessary computations giving 

+...  1 4(T/J)’ 
xcp=l-- - 

P 2  ( P J I 2  
and 

(11) 
1 
P 

GCP = - i(pJ)’ - In 2 - - (T/J)’ + . . . . 
Just as in the classical case [ 191, the entropy of the CP phase becomes negative at low 
temperatures where the physical solution corresponds to either the QP or the SG phase 
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(the CP solution is physically meaningful only in the region where its entropy is positive). 
For the QP phase, we can expand in A which is small and get 

xexp{-p ln[(pr)/ tanh(pr)]}+. . . (12) 

(13 )  

and 

GQp= -In cosh(pr)  -In 2 - $ ( p J ) ’ p  exp{-p ln[(pr)/ tanh(pr)]}+. . . . 
In this case there are only exponentially small finite p corrections within SA. It is 
instructive to examine the low temperature predictions for the QP phase since that is 
where the difficulties of SA for p = 2 become transparent [12]. For the free energy 
F = TG the above result yields a power-law dependence F - F (  T = 0) - - TP-’  giving 
the entropy S - Tp-’. Although the entropy does vanish at T = 0, we stress that SA still 
violates the third law of thermodynamics which requires not only the entropy, but all 
the derivatives of the free energy to vanish in this limit. 

The CP-QP phase boundary is determined by equating the free energies of the two 
phase which, ignoring the exponentially small corrections, gives the equation 

1 1 
- (pJ) ’+-  ( r / J ) ’  = In cosh(pr).  
4 P 

At high temperatures this transition line diverges at T / J  = 1 / f i  for p = CD, but for finite 
p we obtain: 

The finite p corrections within SA thus seem to favour the CP phase at high temperatures. 
It is important to determine the limitations of our large p results. By going back 

to (7), we can see that for fixed p, A can be made arbitrarily small at sufficiently high 
temperatures and so the CP phase ( A  large) cannot exist. In fact, by re-examining the 
above result we can see that the perturbation theory breaks down at temperatures 
T /  J - 4. For fixed p ,  from (9) and ( 1  1) it follows that, as the temperature is increased, 
the C P  value of x decreases, while the QP value increases. At some point, we expect 
these two solutions to coalesce ending the phase transition line in a criticalpoint. In 
order to examine this high temperature region in detail, let us return to (8) which is 
exact for any p as long as SA is valid. It is convenient to define the rescaled temperature 
i = T / ( J f i )  and write the order parameter as x = 1 - l / p  in order to factor out the p 
dependence at T - 4. Expanding in pr - l/G, the reduced free energy can be written 
as G = 6 / 4 p t  with: 

where 

@(x) = Dzx-’/’z-’ sinh(x’”z). I 
The minima of the free energy corresponding to the two phases cannot be obtained 
analytically, but having eliminated the p dependence it is now straightforward to 
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numerically evaluate these solutions and calculate the corresponding phase boundary. 
The resulting high temperature phase diagram is presented in figure 1 where the first 
order phase transition line separating the CP and QP phases is indeed seen to end at 
a critical point at t* = 0.2593 and T*/J = 0.7579. Note that as p is increased, the critical 
temperature T* - t*G also grows, whereas the critical value of the transverse field 
r* remains independent of p .  As a consequence, the critical point is, for large p located 
deep in the semi-classical region justifying the above expansion in pr. 

Having obtained the leading finite p corrections within SA, let us next try to perform 
analogous calculations by going beyond the SA. In the CP phase, although x is 
time-dependent its value still has to be close to 1. Thus (see (7)) the Lagrange multiplier 
can be written in the form 

~ ( t ,  t’)=A,+Al(t ,  t ’ )  (16) 

-pxeff = - p % y +  f (17) 

where A. = &3J)2p and x( t ,  t ’ )  is expected to be small. Our effective Hamiltonian, ( 6 )  
can be broken in a large static part and a small perturbation 

where 

-P%f2:ts -PXe,[A = A o ]  and f s  -PXeff[A =A]. 
We can now expand our free energy, ( 5 )  in 
with respect to A( t, t ‘ )  we obtain an expression for the order parameter 

and by taking a functional derivative 

IDzTr[P(t)PCL(t‘) e x P I ( z m ) Z , ~ ( t ) - P x O [ C L l H .  (18) 
5 Dz T r [ e x P { ( z m )  2, P ( t )  -PXo[PI)l 

XCP(t,  t ’ )  = 

The required computations reduce to finding correlation functions for a single quantum 
spin in a field [21] giving 

Figure 1. The high-temperature phase diagram in the large p limit. The first order phase 
transition line that separates the two paramagnetic phases is plotted in terms of the scaled 
temperature t = T/ JG and the transverse field T/J. The dot at the end of this line represents 
the critical point located at f *  = 0.2593 and T*/J = 0.7579. The inset depicts schematically 
the global structure of the phase diagram at large but finite p .  
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with 
p f  = [Aoz2+ (pr)’] 

and we have used a continuous time notation ( T = t /  M, M + CO). In order to compare 
our result with SA, we can write the order parameter in the suggestive form 

1 4(r/.q2 
p 2  (PJ)’ Xcp(T)  = 1 +- ~ f ( 7 )  

since f ( ~ )  = -1 in the static approximation (9). For fixed T, it is possible to evaluate 
the integrals by steepest descents and show that the time dependence off(.) is 
exponentially weak for large p .  As an illustration, we have plotted the numerically 
calculated f (  T)  for various p values in figure 2 .  This figure shows the manner in which 
the time dependent corrections to the static approximation diminish for large p .  Since 
the p dependence o f f (  T)  actually represents subleading corrections, we must conclude 
that to leading order in p the static approximation remains valid in the CP phase. It 
is not difficult to see that an analogous conclusion actually holds even for the spin-glass 
phase. The presence of a SG ordering introduces additional local (longitudinal) fields 
acting on a quantum spin, suppressing quantum fluctuations even further. 

I I I I 1 

-0.5 

c1 v * 
-1 .o 

-1.5 

0 0.2 0.4 0.6 0.8 1 .o 
7 

Figure 2. Time dependent corrections to the spin auto-correlation function x( T )  in the CP 
phase (see text). The functionf(7) is equal to - 1  in the static approximation (SA).  Since 
the p-dependence of f (7)  represents subleading corrections, SA is valid to leading order 
in I/p. 

In the QP phase the Lagrange multiplier is expected to be small and we can expand 
the free energy ( 5 )  directly in A (  t, t ’ ) .  To obtain the leading large p corrections it is 
necessary to go to second order in A, and the resulting expression for the order parameter 
is 

--XO(T, T’)XO(TI 9 T 2 2 ) 1 x r 1 ( T 1  Y 7 2 )  (21) 
where X ~ ( T , T ’ )  and x 6 4 ) ( ~ ,  T’, T ~ ,  f2 )  are the well known two- and four-point time- 
correlation functions for a single quantum spin [ 113 calculated using the Hamiltonian 
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pZ,, . The required integrations although difficult in general, considerably simplify for 
large p ,  and after lengthy but straightforward algebra we get 

1 

P 
XQP( . )=  x o ( . r )  +- [(PJ)/[(2Pr) t anh( iWll2  

x [ ( I  -xo(T))+2(pr)xo(7)(tanh(pr)-(1 -27) tanh[(pT”1-2~)1)1 
(22) 

where 

~ ~ ( 7 )  = cosh[(pr)(l-2~)]/cosh(pr).  

From this result we can obtain the leading corrections for the reduced free energy 

1 

P 
In contrast to the corresponding SA results, the low temperature corrections to the 

free energy F = TG are now exponentially small: F - Fo- -exp{-2pT}/p, in agreement 
with thermodynamics. Furthermore, we note that the large p convergence is also 
qualitatively changed: instead of exponential we now have power-law - l /p  corrections 
to both the order parameter and the free energy. 

In this letter we have investigated the role of quantum fluctuations and the relevance 
of the static approximation (SA) in quantum spin glasses. By performing a systematic 
large p expansion for the p-spin interaction quantum spin-glass model we have been 
able to explicitly calculate the leading (imaginary) time corrections to the dynamical 
self-coupling x( T). In both the classical paramagnetic and the spin-glass phase we find 
to leading order x( 7) to be actually time independent, making SA valid in these instances. 
Our calculations also show that similar conclusions cannot be drawn in the quantum 
paramagnetic phase where we find a strong disagreement between SA and the exact, 
time-dependent results. Not only is the low temperature behaviour incorrectly predicted 
within SA, but including quantum fluctuations actually changes the large p convergence 
in the QP phase. 

Interesting changes in the phase diagram have also been observed for finite p, where 
we find a new critical point ending the phase boundary between the classical-paramag- 
netic and the quantum-paramagnetic phase. Presently, the structure of this high tem- 
perature region has been investigated only within SA since the large p perturbative 
approaches which allowed accurate, time-dependent calculations, break down at T /  J - 
4. It would be interesting to try to extend time-dependent calculations to this region, 
but that would require a formally different approach than the one presented in this 
letter. It appears that a semi-classical calculation would be sufficient since our critical 
point is expected for large p to reside at (PI‘)*<< 1 .  

G,,= -In cosh(pr)  -In 2-- (pJ)[4(T/J) tanh(pr)]-’. (24) 
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